

Fig. 2. The coordination polyhedron of praseodymium in the structure of the $\beta 1$ phase. The undistorted square antiprism is represented by a dashed line. The angle is shown between the normals to the base planes of distorted and undistorted polyhedra.
$T_{[100]}^{\beta 1} \simeq T_{[100]}^{\alpha}$ between the $\beta 1$ phase and the α phase of the neodymium derivative, indicating the close structural relationship of these phases.

We thank Professor P. Coppens for valuable discussions during the preparation of this paper. This work was supported by the National Science Foundation under Grant No. CHE8711736 and by the US Department of Energy under Grant No. DEF60286ER5231.

References

Darovskikh, A. N., Frank-Kamenetskaja, O. V. \& FundamenskiI, V. S. (1986). Sov. Phys. Crystallogr. 31(2), 165-167.
Darovskikh, A. N., Frank-Kamenetskaja, O. V., Fundamenskil, V. S. \& Golinskaja, O. A. (1985). Sov. Phys. Crystallogr. 30(6), 634.
Darovskikh, A. N., Moskalev P. N., Frank-Kamenetskaja O. V., Sibilev A. I., Trunov V. A. \& Shapkin G. N. (1982). Preprint of Leningrad Nuclear Physics Institute, \# 814.
Darovskikh, A. N., Tsitsenko, A. K., Frank-Kamenetskaja, O. V., Fundamenski, V. S. \& Moskalev, P. N. (1984). Sov. Phys. Crystallogr. 29(3), 273-276.
Gabe, E. J., Le Page, Y., Charland, G. P. \& Lee, F. L. (1989). J. Appl. Cryst. 22, 384-387.

Moskalev, P. N. \& Kirin, I. S. (1970). Russ. J. Inorg. Chem. 15(1), 13-16.
Moskalev, P. N., Shapkin G. N. \& Darovskikh, A. N. (1979). Russ. J. Inorg. Chem. 24(2), 188-192.

Acta Cryst. (1991). C47, 1838-1842

Structures of Zinc(II) and Copper(II) Chloride $\boldsymbol{N}, \mathbf{N}$-Dimethylformamide Solvates

By Honoh Suzuki, Nobuhiro Fukushima and Shin-ichi Ishiguro*
Department of Electronic Chemistry, Tokyo Institute of Technology at Nagatsuta, Midori-ku, Yokohama 227, Japan

and Hideki Masuda and Hitoshi Ohtaki
Coordination Chemistry Laboratories, Institute for Molecular Science, Myodaiji, Okazaki 444, Japan
(Received 21 January 1991; accepted 6 March 1991)

Abstract

I) Dichlorobis(N, N-dimethylformamide)zinc(II), $\left[\mathrm{ZnCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right], M_{r}=282 \cdot 5$, monoclinic, $C 2 / c, a=13 \cdot 296$ (4),$b=13 \cdot 254$ (4), $c=14 \cdot 702$ (6) \AA, $\beta=113.76(3)^{\circ}, \quad V=2371(2) \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.583 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мо $K \alpha)=0.71073 \AA, \mu($ Mo $K \alpha)=$ $25.5 \mathrm{~cm}^{-1}, F(000)=1152, T=226 \mathrm{~K}, R=0.035$ for 2825 independent reflections. The Zn atom has a tetrahedral environment of two O atoms from two N, N-dimethylformamide (DMF) molecules and two Cl atoms, with $\mathrm{Zn}-\mathrm{O}$ distances of $2 \cdot 003$ (2) and 1.993 (2) \AA and $\mathrm{Zn}-\mathrm{Cl}$ distances of 2.203 (1) and $2 \cdot 214$ (1) \AA. (II) \quad Di- μ-chloro-bis[chlorobis(N, N -

[^0]0108-2701/91/091838-05\$03.00
dimethylformamide)copper(II)], $\left[\mathrm{CuCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]_{2}$, $M_{r}=561 \cdot 3$, monoclinic, $P 2_{1} / n, a=11 \cdot 568(5), b=$ 11.617 (7) $, \quad c=8.992(4) \AA, \quad \beta=111.87(5)^{\circ}, \quad V=$ 1121 (1) $\AA^{3}, Z=2, D_{x}=1.662 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo K α) $=$ $0.71073 \AA, \mu($ Mo $K \alpha)=24 \cdot 1 \mathrm{~cm}^{-1}, F(000)=572, T$ $=265 \mathrm{~K}, R=0.054$ for 2577 independent reflections. The structure consists of centrosymmetric chlorinebridged dimers, the bridging $\mathrm{Cu}-\mathrm{Cl}$ distance being 2.661 (2) \AA. The coordination around copper is distorted tetragonal pyramidal with two cis O atoms $[\mathrm{Cu}-\mathrm{O}=1.973$ (3) and $1.989(3) \AA]$ and two Cl atoms $[\mathrm{Cu}-\mathrm{Cl}=2 \cdot 247$ (2) and $2 \cdot 284$ (1) \AA] in the basal plane and the bridging Cl atom axial. The $\mathrm{Cu} \cdots \mathrm{Cu}$ separation in the dimer is $3 \cdot 613$ (2) \AA. In © 1991 International Union of Crystallography
both complexes, the DMF ligands ae essentially planar and coordinated to the metal ion in the lone-pair direction of the oxygen donor atom.

Introduction. N, N-Dimethylformamide (DMF) is a prominent member of aprotic solvents which act as oxygen-donor ligands, and a number of metal complexes containing DMF have been synthesized and their structures reported. Recently, studies on complexation equilibria between bivalent transition metal and chloride ions in DMF (Ishiguro, Jeliazkova \& Ohtaki, 1985; Ishiguro, Ozutsumi \& Ohtaki, 1987) have aroused our particular interest in the structure of metal chloride DMF solvates. Detailed structural information, such as coordination bond lengths, bond angles, and interactions between ligands, is valuable for elucidating the role of solvents in the thermodynamics of complexation reactions in DMF. Here we report structures of zinc(II) and copper(II) chloride DMF solvates.

Experimental. The complexes $\left[\mathrm{ZnCl}_{2}\left\{\left(\mathrm{CH}_{3}\right)_{2-}\right.\right.$ $\left.\mathrm{NCHO}\}_{2}\right]$ (I) and $\left[\mathrm{CuCl}_{2}\left\{\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCHO}\right\}_{2}\right]_{2}$ (II) were crystallized from DMF solution of the corresponding anhydrous metal chloride. Complex (I) was stable at room temperature, but complex (II) was less stable and a gradual decomposition was observed, so that the latter crystal was stored at 273 K and used for measurement within two weeks after preparation. Prismatic crystals (approx. $0.4 \times 0.4 \times 0.5 \mathrm{~mm}$) used for X-ray measurement, Rigaku AFC-5 diffractometer with graphite-monochromated Mo $K \alpha$ radiation, lattice parameters from least-squares refinement of 2θ values of 25 reflections [$21<2 \theta<28^{\circ}$ for (I) and $20<2 \theta<25^{\circ}$ for (II)], $\omega-2 \theta$ scan, scan speed 4° $\min ^{-1}$, scan width $(0.8+0.5 \tan \theta)^{\circ}$, background 8 s at each end of scan, $2 \theta_{\text {max }}=60^{\circ}$, hkl range $-18-18$, $0-18,0-20$ for (I) and -16-16, 0-16, $0-12$ for (II); three standard reflections measured every 100 reflections showed no significant decay; 3690 reflections measured of which 2825 with $F_{o}>3 \sigma\left(F_{o}\right)$ for (I), 3645 reflections measured of which 2577 with $F_{o}>$ $3 \sigma\left(F_{o}\right)$ for (II), no correction for absorption. Structures were solved by direct methods using MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) and refined by blockdiagonal least-squares analysis minimizing the function $\sum w\left(F_{o}-\left|F_{c}\right|\right)^{2}$ with UNICSIII (Sakurai \& Kobayashi, 1979); H atoms were located in difference Fourier maps and included in the refinement. Final $R=0.035, w R=0.043$ with $w=$ $\left[\sigma^{2}\left(F_{o}\right)+\left(0.020 F_{o}\right)^{2}\right]^{-1}, \quad S=1.49, \quad(\Delta / \sigma)_{\text {max }}=0.32$, $(\Delta \rho)_{\text {max }}=0.80$ and $(\Delta \rho)_{\text {min }}=-0.63$ e \AA^{-3} for (I); R $=0.054, \quad w R=0.061 \quad$ with $\quad w=\left[\sigma^{2}\left(F_{o}\right)+\right.$ $\left.\left(0.025 F_{o}\right)^{2}\right]^{-1}, S=1.78,(\Delta / \sigma)_{\max }=0.31,(\Delta \rho)_{\max }=$ 2.5 and $(\Delta \rho)_{\text {min }}=-1.7 \mathrm{e} \AA^{-3}$ (both near the Cu atom) for (II). Slight decomposition of crystal (II) is

Table 1. Fractional atomic coordinates and equivalent isotropic temperature factors of non- H atoms in
$\left[\mathrm{ZnCl}_{2}(\mathrm{DMF})_{2}\right]$ (I) with e.s.d.'s in parentheses

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
Zn	$0 \cdot 23616$ (2)	0.10737 (2)	$0 \cdot 24940$ (2)	2.5
$\mathrm{Cl}(1)$	0.31067 (5)	-0.03142 (4)	0.33122 (5)	$3 \cdot 8$
$\mathrm{Cl}(2)$	0.06099 (5)	0.11361 (5)	0.14528 (5)	3.6
$\mathrm{O}(1)$	0.25951 (12)	$0 \cdot 22421$ (11)	$0 \cdot 34210$ (11)	3.0
$\mathrm{O}(2)$	0.32716 (14)	$0 \cdot 15140$ (12)	$0 \cdot 17704$ (13)	3.6
N(1)	0.18614 (14)	$0 \cdot 34992$ (13)	0.39970 (13)	$2 \cdot 6$
N(2)	0.4054 (2)	$0 \cdot 26900$ (14)	$0 \cdot 11593$ (13)	3.1
C(1)	$0 \cdot 1787$ (2)	0.2682 (2)	0.3481 (2)	2.7
C(2)	$0 \cdot 2911$ (2)	$0 \cdot 3989$ (2)	0.4536 (2)	3.9
C(3)	0.0883 (2)	0.3994 (2)	$0 \cdot 3985$ (2)	$4 \cdot 3$
C(4)	0.3495 (2)	$0 \cdot 2405$ (2)	$0 \cdot 1675$ (2)	3-1
C(5)	0.4450 (2)	$0 \cdot 1960$ (2)	0.0650 (2)	$4 \cdot 6$
C(6)	0.4340 (3)	$0 \cdot 3746$ (2)	$0 \cdot 1113$ (3)	5.5

Table 2. Fractional atomic coordinates and equivalent isotropic temperature factors of non- H atoms in
$\left[\mathrm{CuCl}_{2}(\mathrm{DMF})_{2}\right]_{2}(\mathrm{II})$ with e.s.d.'s in parentheses

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{l} \boldsymbol{\beta}_{i j} \mathbf{a}_{1} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\mathrm{cq}}\left(\AA^{2}\right)$
Cu	$0 \cdot 11141$ (4)	$0 \cdot 11326$ (3)	0.51788 (4)	$2 \cdot 2$
$\mathrm{Cl}(1)$	0.22641 (8)	0.06705 (8)	0.37286 (10)	3.1
$\mathrm{Cl}(2)$	0.12879 (7)	-0.06419 (7)	0.63362 (9)	$2 \cdot 5$
$\mathrm{O}(1)$	0.0995 (2)	0.1899 (2)	0.7094 (3)	$2 \cdot 9$
$\mathrm{O}(2)$	0.0719 (3)	$0 \cdot 2646$ (2)	0.4113 (3)	3.0
$\mathrm{N}(1)$	0.0300 (3)	$0 \cdot 1965$ (3)	0.9132 (3)	$2 \cdot 7$
N(2)	0.0912 (3)	0.4571 (2)	0.4001 (3)	2.4
C(1)	0.0262 (3)	$0 \cdot 1588$ (3)	0.7740 (4)	$2 \cdot 6$
C(2)	$0 \cdot 1234$ (4)	$0 \cdot 2795$ (3)	1.0070 (4)	$3 \cdot 3$
C(3)	-0.0627 (4)	0.1595 (4)	0.9785 (5)	$4 \cdot 1$
C(4)	$0 \cdot 1264$ (3)	0.3562 (3)	0.4692 (4)	$2 \cdot 3$
C(5)	$0 \cdot 1615$ (4)	0.5612 (3)	0.4645 (5)	$3 \cdot 5$
C(6)	-0.0138 (4)	$0 \cdot 4674$ (4)	$0 \cdot 2486$ (4)	3.5

a possible reason for the residual deviations in the final differential Fourier map. Atomic scattering factors and anomalous-dispersion terms were taken from International Tables for X-ray Crystallography (1974, Vol. IV).

Final atomic coordinates for non- H atoms are given in Tables 1 and 2.* Bond lengths, bond angles and relevant torsion angles are given in Tables 3 and 4. Figs. 1 and 2 are ORTEP drawings (Johnson, 1965) showing the atomic numbering scheme.

Discussion. In complex (I), the Zn atom is coordinated to two O atoms of DMF and two Cl atoms forming a tetrahedral environment (Fig. 1). Bond angles around $\mathrm{Zn}\left(100-122^{\circ}\right)$ indicate a slight distor-

[^1]Table 3. Bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$ and relevant torsion angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{ZnCl}_{2}(\mathrm{DMF})_{2}\right]$ (I) with e.s.d.'s in parentheses

$\mathrm{Zn}-\mathrm{Cl}(1)$	$2 \cdot 2028$ (8)	$\mathrm{N}(1)-\mathrm{C}(1) \quad 1$	$1 \cdot 303$ (3)
$\mathrm{Zn}-\mathrm{Cl}(2) \quad 2$	2.2139 (11)	$\mathrm{N}(1)-\mathrm{C}(2) \quad 1$.	1.451 (3)
$\mathrm{Zn}-\mathrm{O}(1) \quad 2$	2.0028 (16)	$\mathrm{N}(1)-\mathrm{C}(3) \quad 1$.	1.452 (4)
$\mathrm{Zn}-\mathrm{O}$ (2)	1.993 (2)	$\mathrm{N}(2)-\mathrm{C}(4) \quad 1$.	$1 \cdot 314$ (4)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.257 (3)	$\mathrm{N}(2)-\mathrm{C}(5) \quad 1$.	1.447 (4)
$\mathrm{O}(2)-\mathrm{C}(4)$	1.239 (3)	$\mathrm{N}(2)-\mathrm{C}(6) \quad 1.4$	1.460 (4)
$\mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{Cl}(2)$	121.68 (3)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	121.4 (2)
$\mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{O}(1)$	111.21 (5)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	120.74 (18)
$\mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{O}(2)$	107.44 (6)	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	117.7 (2)
$\mathrm{Cl}(2)-\mathrm{Zn}-\mathrm{O}(1)$	$105 \cdot 85$ (5)	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(5)$	$121 \cdot 1$ (2)
$\mathrm{Cl}(2)-\mathrm{Zn}-\mathrm{O}(2)$	108.41 (6)	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(6)$	$121 \cdot 5$ (3)
$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(2)$	$100 \cdot 13$ (7)	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(6)$	117.4 (3)
$\mathrm{Zn}-\mathrm{O}(1)-\mathrm{C}(1)$	120.27 (12)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	124.03 (18)
$\mathrm{Zn}-\mathrm{O}(2)-\mathrm{C}(4)$	$124 \cdot 30$ (19)	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{N}(2)$	$123 \cdot 8$ (2)
$\mathrm{Zn}-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$) $-173 \cdot 70$ (17)	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	1) 1.6 (3)
$\mathrm{Zn}-\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{N}(2)$	-176.81 (17)	$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	1) 176.6 (2)
$\mathrm{O}(2)-\mathrm{Zn}-\mathrm{O}(1)-\mathrm{C}(1)$) 128.84 (16)	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{O}(2)$	2) 0.4 (4)
$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(2)-\mathrm{C}(4)$	- 24.9 (2)	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{O}(2)$	2) $-176 \cdot 9$ (3)
$\mathrm{Cl}(2)-\mathrm{Zn}-\mathrm{O}(1)-\mathrm{C}(1)$	(16-25 (17)		

Table 4. Bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$ and relevant torsion angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{CuCl}_{2}(\mathrm{DMF})_{2}\right]_{2}$ (II) with e.s.d.'s in parentheses

$\mathrm{Cu}-\mathrm{Cl}(1) \quad 2$	$2 \cdot 2474$ (15)	$\mathrm{N}(1)-\mathrm{C}(1)$	1.312 (5)
$\mathrm{Cu}-\mathrm{Cl}(2) \quad 2$	$2 \cdot 2841$ (14)	$\mathrm{N}(1)-\mathrm{C}(2)$	1.459 (5)
$\mathrm{Cu}-\mathrm{Cl}\left(2^{\text {i }}\right.$) 2	2.6611 (17)	$\mathrm{N}(1)-\mathrm{C}(3)$	1.466 (7)
$\mathrm{Cu}-\mathrm{O}(1) \quad 1$	1.989 (3)	$\mathrm{N}(2)-\mathrm{C}(4)$	1.319 (4)
$\mathrm{Cu}-\mathrm{O}(2) \quad 1$	1.973 (3)	$\mathrm{N}(2)-\mathrm{C}(5)$	1.452 (5)
$\mathrm{O}(1)-\mathrm{C}(1) \quad 1$	1.246 (5)	$\mathrm{N}(2)-\mathrm{C}(6)$	1.454 (4)
$\mathrm{O}(2)-\mathrm{C}(4) \quad 1$	$1 \cdot 248$ (4)		
$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{Cl}(2)$	94.48 (4)	$\mathrm{Cu}-\mathrm{O}(1)-\mathrm{C}(1)$	123.5 (2)
$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{O}(1) \quad 1$	148.92 (9)	$\mathrm{Cu}-\mathrm{O}(2)-\mathrm{C}(4)$	124.6 (2)
$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{O}(2)$	90.65 (10)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	121.8 (4)
$\mathrm{Cl}(2)-\mathrm{Cu}-\mathrm{O}(1)$	91.85 (8)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	121.0 (3)
$\mathrm{Cl}(2)-\mathrm{Cu}-\mathrm{O}(2) \quad 1$	$172 \cdot 20$ (9)	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	117.2 (3)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	86.75 (11)	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(5)$	121.6 (3)
$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{Cl}\left(2^{\mathrm{i}}\right) \quad 1$	112.50 (5)	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(6)$	121.2 (3)
$\mathrm{Cl}(2)-\mathrm{Cu}-\mathrm{Cl}\left(2^{\text {i }}\right.$)	86.43 (4)	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(6)$	117.0 (3)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{Cl}\left(2^{2}\right)$	98.23 (9)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$124 \cdot 1$ (3)
$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{Cl}\left(2^{\mathbf{i}}\right)$	86.18 (9)	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{N}(2)$	$122 \cdot 8$ (3)
$\mathrm{Cu}-\mathrm{Cl}(2)-\mathrm{Cu}^{i}$	93.57 (4)		
$\mathrm{Cu}-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	169.2 (3)	$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{Cl}(2)-\mathrm{Cu}^{\text {i }}$	-112.32 (3)
$\mathrm{Cu}-\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{N}(2)$	-174.7 (2)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{Cl}(2)-\mathrm{Cu}^{i}$	98.14 (8)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	1) $\quad-0.5(6)$	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{Cl}(2)-\mathrm{Cu}^{i}$	18.7 (6)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	1) $\quad 177.4$ (4)	$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{Cl}\left(2^{i}\right)-\mathrm{Cu}^{\text {i }}$	93.38 (4)
$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{O}(2)$	2) $-175 \cdot 8(3)$	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{Cl}\left(2^{\text {i }}\right)-\mathrm{Cu}^{i}$	-91.35 (8)
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{O}(2)$	2) $\quad-0.9(5)$	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{Cl}\left(2^{i}\right)-\mathrm{Cu}^{i}$	-177.51 (8)

Symmetry-equivalent position: (i) $-x,-y, 1-z$.
tion from a regular tetrahedron (Table 3). The $\mathrm{Zn}-\mathrm{Cl}$ distances ($2 \cdot 203$ and $2 \cdot 214 \AA$) are in good agreement with those of $2 \cdot 209$ (4) and $2 \cdot 220$ (3) \AA in an analogous tetrahedral complex $\left[\mathrm{ZnCl}_{2}(\mathrm{DMA})_{2}\right]$ (III) (DMA $=N, N$-dimethylacetamide) reported by Herceg \& Fischer (1974), but shorter than those (average $2.27 \AA$) in a tetrahedral $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ anion (Søtofte, Hazell \& Rasmussen, 1976). The $\mathrm{Zn}-\mathrm{O}$ distances (1.993 and $2.003 \AA$) are slightly longer than those of 1.964 (7) and 1.975 (8) \AA in (III) (Herceg \& Fischer, 1974).

A noticeable difference between the structures of (I) and (III) is found in the conformation around the metal-amide bonds: In (I), the $\mathrm{O}(2)-\mathrm{Zn}-\mathrm{O}(1)-$ $\mathrm{C}(1)$ and $\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(2)-\mathrm{C}(4)$ torsion angles (φ) are 129 and -25°, respectively, whereas the corresponding $\mathrm{O}-\mathrm{Zn}-\mathrm{O}-\mathrm{C}$ torsion angles are 155 and -161° in (III) (Herceg \& Fischer, 1974). Thus, the DMA molecules in (III) coordinate towards the 'trans' conformation ($\varphi= \pm 180^{\circ}$) relative to each other, possibly owing to the steric hindrance of the

Fig. 1. Molecular structure and labeling scheme for $\left[\mathrm{ZnCl}_{2}(\mathrm{DMF})_{2}\right]$ (I) with 30% probability thermal ellipsoids for non-H atoms.

Fig. 2. Molecular structure and labeling scheme for $\left[\mathrm{CuCl}_{2}(\mathrm{DMF})_{2}\right]_{2}$ (II) with 30% probability thermal ellipsoids for non- H atoms. The atoms Cu and Cu^{i} etc. are related by a crystallographic center of symmetry.
methyl(acetyl) group of DMA. In contrast, DMF molecules in (I) seem to prefer the 'cis' ($\varphi=0^{\circ}$) and 'eclipse' $\left(\varphi= \pm 120^{\circ}\right)$ forms. Interactions between the formyl H atom of DMF and the adjacent ligands may play a significant role in determining the conformation. Indeed, the distance between $\mathrm{Cl}(2)$ and the $\mathrm{C}(1)$-attached H atom [$2.80(3) \AA$] is shorter than the van der Waals sum of $2.95 \AA$ (Bondi, 1964); the distance between $\mathrm{O}(1)$ and the $\mathrm{C}(4)$-attached H atom, however, is 2.79 (3) \AA, which is just comparable with the van der Waals sum ($2.72 \AA$).
Complex (II) has a centrosymmetric dimer structure consisting of two crystallographically equivalent cis-[CuCl_{2} (DMF) $\left.)_{2}\right]$ moieties (Fig. 2). Each moiety may be viewed as a distorted square plane, and the molecules in the dimeric unit are held together by two weaker $\mathrm{Cu}-\mathrm{Cl}$ bonds which form the axes of the elongated tetragonal pyramidal arrangments around the Cu atoms. The two $\mathrm{Cu}-\mathrm{O}$ and two short $\mathrm{Cu}-\mathrm{Cl}$ distances (Table 4) are within the range expected for short copper-ligand bond lengths (Filipenko, Krasochka \& Atovmyan, 1984; Filipenko, Ponomarev \& Atovmyan, 1986; Hathaway, 1987; Ozutsumi, Ishiguro \& Ohtaki, 1988a,b). The bridging $\mathrm{Cu}-\mathrm{Cl}(2)$ distance of $2 \cdot 284 \AA$ is slightly longer than the terminal $\mathrm{Cu}-\mathrm{Cl}(1)$ distance of $2 \cdot 247 \AA$. The axial $\mathrm{Cu}-\mathrm{Cl}\left(2^{i}\right)$ bond is much longer ($2.661 \AA$). It is, however, nearly the shortest among the long $\mathrm{Cu}-\mathrm{Cl}$ distances $(2 \cdot 66-3 \cdot 74 \AA)$ in di-μ-chloro-bridged copper(II) dimers (Hathaway, 1987). The $\mathrm{Cu} \cdots \mathrm{Cu}$ separation in (II) is 3.613 (2) \AA, which is intermediate in the range $3 \cdot 45-4 \cdot 08 \AA$ for these dimers.
The angles $\mathrm{Cl}(2)-\mathrm{Cu}-\mathrm{O}(2) \quad\left(\theta=172 \cdot 2^{\circ}\right)$ and $\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{O}(1) \quad\left(\varphi=148.9^{\circ}\right)$ indicate a marked distortion from an idealized tetragonal pyramid ($\theta=$ $\varphi=180^{\circ}$. The $\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{Cl}\left(2^{\mathrm{i}}\right)$ angle $\left(112 \cdot 5^{\circ}\right)$ is close to 120° for the trigonal bipyramidal extreme (θ $=180^{\circ}, \varphi=120^{\circ}$). These in-plane angular distortions may be evaluated by the trigonality index $\tau=$ $[(\theta-\varphi) / 60] \times 100$, which represents a percentage distortion of a tetragonal pyramidal stereochemistry towards a trigonal bipyramidal one (Addison, Rao, Reedijk, van Rijn \& Verschoor, 1984; Hathaway, 1987). The value $\tau=39 \%$ for complex (II) points to an intermediate structure between these extremes. Such a distortion is generally involved in fivecoordinate copper(II) complexes, and may be rationalized in terms of the second-order Jahn-Teller effect (Hathaway, 1987).
A somewhat different structure was reported for (II) (Lavrentiev, Korableva, Lavrentieva, Nifontova, Khidekel, Gusakovskaya, Larkina, Arutyunian, Filipenko, Ponomarev \& Atovmyan, 1979, 1980; Nifontova, Lavrentiev, Ponomarev, Filipenko, Krasochka, Atovmyan \& Khidekel, 1982). Essentially the structure is the same as ours, the complex
being a centrosymmetric dimer with two bridging chlorines and the Cu atoms being five coordinated. Nonetheless, the $\mathrm{Cu}-\mathrm{Cl}$ bond lengths, $2 \cdot 266$ (2), 2.464 (2) and 2.794 (2) \AA, are markedly longer than our corresponding values. It was also observed that one of the coordinated DMF molecules has unusually long (by $0.02-0.19 \AA$) intramolecular bond lengths, which is not the case with our results. The structure was determined at 300 K , so such differences might arise from a phase transition below this temperature; the results are rather questionable, however, because the crystal was found to be very unstable under radiation at room temperature, and the number of the reflections used (965) was less than half that used by us (2577).
The intramolecular bond lengths and angles of the DMF molecules in (I) and (II) (Tables 3 and 4) are in good agreement with those found in other DMF solvates (Baumgartner, 1986; Day \& Hoard, 1970; Florian \& Corey, 1968; Pignedoli \& Peyronel, 1979; Ziolo \& Extine, 1981). The O-C distances of the coordinated DMF molecules ($1.24-1.26 \AA$) are each slightly longer than that of gaseous DMF ($1.20 \AA$; Vilkov, Akishin \& Presnyakova, 1962), and that of non-coordinating DMF $(1.22 \AA)$ in the crystal structure of chlorobis(2-thiouracil)copper(I) (Hunt, Griffith \& Amma, 1976). DMF is essentially planar, and none of its non-H atoms are removed from the least-squares plane by more than $0.032 \AA$. The $M-\mathrm{O}-\mathrm{C}$ bond angles ($M=\mathrm{Zn}$ or Cu) are $120-125^{\circ}$, and the metal atom is nearly coplanar with DMF, with a slight displacement from the DMF mean plane of $0.07-0.29 \AA$; thus, the coordination occurs in the lone-pair direction of the O atom. In the $\left[\mathrm{Mg}(\mathrm{DMF})_{6}\right]^{2+}$ cation, the $\mathrm{Mg}-\mathrm{O}-\mathrm{C}$ angles are 122-139 and deviations of Mg from the DMF mean plane are $0 \cdot 11-0.54 \AA$ (Rao, Rao \& Rao, 1984). The $\mathrm{Fe}-\mathrm{O}-\mathrm{C}$ angles are $118-134^{\circ}$ in the $\left[\mathrm{Fe}(\mathrm{DMF})_{6}\right]^{2+}$ cation (Baumgartner, 1986; Young, Walters \& Dewan, 1989).

This work was financially supported by Grant-inAid for Scientific Research No. 2640469 from the Ministry of Education, Science and Culture of Japan, and by the Joint Studies Program (1989-90) of the Institute for Molecular Science.

References

Addison, A. W., Rao, T. N., Reedijk, T., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
Baumgartner, O. (1986). Z. Kristallogr. 174, 253-263.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Day, V. W. \& Hoard, J. L. (1970). J. Am. Chem. Soc. 92, 3626-3635.
Filipenko, O. S., Krasochka, O. N. \& Atovmyan, L. O. (1984). Koord. Khim. 10, 547-550; Sov. J. Coord. Chem. 10, 300-304.

Filipenko, O. S., Ponomarev, V. I. \& Atovmyan, L. O. (1986). Koord. Khim. 12, 991-999; Sov. J. Coord. Chem. 12, 573-582.
Florian, L. R. \& Corey, E. R. (1968). Inorg. Chem. 7, 722-725. Hathaway, B. J. (1987). Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds, Vol. 5, edited by G. Wilkinson, R. D. Glllard \& J. A. McCleverty, pp. 533-774. Oxford: Pergamon Press.
Herceg, M. \& Fischer, J. (1974). Acta Cryst. B30, 1289-1293.
Hunt, G. W., Griffith, E. A. H. \& Amma, E. L. (1976). Inorg. Chem. 15, 2993-2997.
Ishguro, S., Jeliazkova, B. G. \& Ohtaki, H. (1985). Bull. Chem. Soc. Jpn, 58, 1143-1148.
Ishiguro, S., Ozutsumi, K. \& Ohtaki, H. (1987). Bull. Chem. Soc. Jpn, 60, 531-538.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Lavrentiev, I. P., Korableva, L. G., Lavrentieva, E. A., Nifontova, G. A., Khidekel, M. L., Gusakovskaya, I. G., larkina, T. I., Arutyunian, L. D., Filipenko, O. S., Ponomarev, V. I. \& Atovmyan, L. O. (1979). Koord. Khim. 5, 1484-1498; Sov. J. Coord. Chem. 5, 1152-1165.
Lavrentiev, I. P., Korableva, L. G., Lavrentieva, E. A., Nifontova, G. A., Khidekel, M. L., Gusakovskaya, I. G., larkina, T. I., Arutyunian, L. D., Filipenko, O. S., Ponomarev, V. I. \& Atovmyan, L. O. (1980). Transition Met. Chem. 5, 193-200.

Main, P., Hull, S. E., Lessinger, L., Germain, G., DeclercQ, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nifontova, G. A., Lavrentiev, I. P., Ponomarev, V. I., Filipenko, O. S., Krasochka, O. N., Atovmyan, L. O. \& Khidekel, M. L. (1982). Izv. Akad. Nauk SSSR Ser. Khim. pp. 1691-1697; Bull. Acad. Sci. USSR Div. Chem. Sci. pp. 15011506.

Ozutsum, K., Ishguro, S. \& Ohtaki, H. (1988a). Bull. Chem. Soc. Jpn, 61, 715-722.
Ozutsumi, K., Ishiguro, S. \& Ohtaki, H. (1988b). Bull. Chem. Soc. Jpn, 61, 945-951.
Pignedoli, A. \& Peyronel, G. (1979). Acta Cryst. B35, 20092013.

Rao, C. P., Rao, A. M. \& Rao, C. N. R. (1984). Inorg. Chem. 23, 2080-2085.
Sakurai, T. \& Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-77.
Søtofte, I., Hazell, R. G. \& Rasmussen, S. E. (1976). Acta Cryst. B32, 1692-1696.
Vilkov, L. V., Akishin, P. A. \& Presnyakova, V. M. (1962). Zh. Strukt. Khim. 3, 5-9; J. Struct. Chem. 3, 3-7.
Young, A. C. M., Walters, M. A. \& Dewan, J. C. (1989). Acta Cryst. C45, 1733-1736.
Ziolo, R. F. \& Extine, M. (1981). Inorg. Chem. 20, 2709-2711.

Single-Crystal Neutron Diffraction: Structure of Sodium Tris(acetato)-dioxouranate(1-)

By A. Navaza,* P. Charpin \dagger and D. Vigner
CEN Saclay, SCM, CNRS URA331, 91191 Gif sur Yvette CEDEX, France
and G. Heger
Laboratoire Léon Brillouin, CEN Saclay, 91191 Gif sur Yvette CEDEX, France

(Received 14 January 1991; accepted 11 March 1991)

Abstract

Na}\left[\mathrm{UO}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{3}\right], \quad M_{r}=467 \cdot 09\), cubic, $P 2_{1} 3, a=10.691$ (8) $\AA, V=1222$ (3) $\AA^{3}, Z=4, D_{x}=$ $2.562 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda=0.831$ (1) $\AA, \quad \mu=1.2 \mathrm{~cm}^{-1}$ (evaluated), $F(000)=258.9 \mathrm{fm}$ for cell content, room temperature, $R=0.037$, $w R=0.029$ for 452 observed reflections. The structure of the compound determined by neutron diffraction is essentially the same as that obtained by X-ray diffraction, excluding the hydrogen atoms. The uranyl ion lies on the threefold axis surrounded by three symmetrically related acetate groups. The coordination polyhedron of the sodium atom is intermediate between an octa-

^[* Teaching member of the Centre Pharmaceutique, 92290 Châtenay-Malabry, France. \dagger Present address: ER180, Laboratoire de Physique, Centre Pharmaceutique, 92290 Châtenay-Malabry, France.]

0108-2701/91/091842-04\$03.00
hedron and a trigonal prism; six oxygen atoms from six different acetate ligands participate in this coordination. The hydrogen atoms of the methyl group are observed in two positions which do not coincide with those proposed from X-ray studies.

Introduction. The crystal structure of $\mathrm{Na}\left[\mathrm{UO}_{2}-\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{3}\right]$ was first determined by conventional X-ray methods by Fankuchen (1935), and more completely by Zachariasen \& Plettinger (1959). A recent redetermination, including anomalous scattering, by Templeton, Zalkin, Ruben \& Templeton (1985) led to more accurate parameters and to the absolute configuration of the structure; the coordinate system corresponds to a crystal with a negative sign for optical activity.
© 1991 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54065 (28 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

